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The second approximation to cnoidal and solitary waves 

By E. V. LAITONE 
University of California, Berkeley 

(Received 19 April 1960) 

The expansion method introduced by Friedrichs (1948) for the systematic 
development of shallow-water theory for water waves of large wavelength was 
used by Keller (1948) to  obtain the first approximation for the finite-amplitude 
solitary wave of Boussinesq (1872) and Rayleigh (1876), as well as for periodic 
waves of permanent type, corresponding to  the cnoidal waves of Korteweg & 
de Vries (1895). 

The present investigation extends Friedrich’s method so as to include terms 
up to the fourth order from shallow-water theory for a flat horizontal bottom, 
and thereby obtains the complete second approximations to both cnoidal and 
solitary waves. These second approximations show that, unlike the first approxi- 
mation, the vertical motions cannot be considered as negligible, and that the 
pressure variation is no longer hydrostatic. 

1. Introduction 
This paper is primarily concerned with higher-order solutions of the finite- 

amplitude, long water waves which are propagated without a change in shape in 
shallow water. We will obtain the exact second approximations to the solitary 
wave first analysed by Boussinesq (1872) and Rayleigh (1876), and to the periodic 
waves of permanent form, the so-called ‘ cnoidal’ waves, which were discovered 
by Korteweg & de Vries (1895). 

The successive approximations are obtained through Friedrichs’s ( 1948) 
expansion method for shallow-water theory. This method consists of a power 
series development in terms of a dimensionless parameter which is related to the 
transformations that are found necessary in order to yield the classical non-linear 
shallow-water equations from the zero-order terms in this small perturbation 
series. Friedrichs’s expansion method was analysed and discussed by Stoker 
(1957)’ and was used by Keller (1948) to obtain the first approximation to the 
solitary wave and periodic waves resembling the cnoidal waves. It will be shown 
that if only the first-order terms are retained, then the solution obtained by 
Friedrichs’s (1948) method is identical to the one first given by Korteweg & 
de Vries (1895). 

The second approximations to the solitary and cnoidal waves will be shown to 
depend on some of the fourth-order terms in the Friedrichs’s expansion method. 
These second approximations will show that, in the higher-order terms, the 
variation in pressure is no longer hydrostatic, and that the vertical velocity and 
vertical accelerations are no longer small in magnitude. These relations are used 



Second approximation to cnoidal and solitary wave  43 1 

to indicate that probably the maximum elevation of any wave of finite amplitude 
is 5 of the depth below the trough. This indicates that the limiting total height 
of a solitary wave may be 1.727h, where h is the undisturbed water depth. This 
value is in much better agreement with the experimental data of Daily & 
Stephan (1952) than is the commonly used value of 1.782, as obtained by 
McCowan (18941, or the value of 1.827 as recently derived by Yamada (1957). 

The use of Friedrichs (1948) expansion method for these particular shallow- 
water investigations has been shown to have at least an asymptotic significance 
by the existence proof of Friedrichs & Hyers (1954) for solitary waves, and the 
corresponding existence proof by Littman (1957) for cnoidal waves. Truesdell 
(1956, p. xcviii) has also pointed out that Friedrichs’s expansion method for 
shallow-water waves is only a particular case of a more general perturbation 
series developed by Lagrange. 

2. Friedrichs’s expansion method for non-linear shallow-water theory 
If we follow the procedure introduced by Friedrichs (1948), we ‘stretch’ the 

vertical independent variable y with respect to the horizontal independent 
variable 2 by introducing the following non-dimensional variables based upon 
reference lengths d and e with d < e :  

These non-dimensional variables are then introduced into the continuity 
equation, the equations of motion, the potential or irrotationality condition, 
and the boundary conditions at the free surface y = 7 and at the flat horizontal 
rigid bottom y = - h = const. (see figure l), which are written as follows in terms 
of the Euler variables for steady flow in the direction of the x-axis only (e.g. see 
Stoker (1957, p. 28) or Lamb (1932)): 

UX+VY = 0, 

uux f VUY = - -pz ,  

uvx+vv =--1, -8 ,  

1 

P 
1 

P U  
v =u z Y’ 

AP(2, r> = P(2,  r )  -1,atmou. = 0, 
v(x, r )  = 42,  17) r z ,  v(x, - h) = 0. 

(2 .2 )  

In  terms of the non-dimensional stretching parameter defined by (2.1) and 

r = (d/e)2 < 1, (2.3) 
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equations (2.2) are transformed to 

crux+T$ = 0, 

a( uu, + P,) + VU17 = 0, 

(T(UVX+P,+ I ) +  VV, = 0, 

V, = u,, P ( X , N )  = 0, 
V ( X ,  N )  = a U ( X ,  N )  Nx, V ( X ,  - H )  = 0. 

Now, following Friedrichs (1948), we assume that U ,  V ,  and Peach has a power 
series expansion in terms of the stretching parameter defined by (2.3) in the form 

(2 .5)  i 
W 

F ( X ,  Y )  = a"Pn(X, Y )  
n= 0 

W 

for - H  6 Y < N ( X )  = C @N,(X). 
r=o 

Since H is known (a constant for the flat horizontal bottom case being considered), 
therefore U and V can be directly evaluated a t  Y = - H .  However, at the free 
surface Y = N ( X ) ,  we cannot directly evaluate U ,  V ,  or P since N is unknown 
and changing directly with each N, for every order of approximation. Con- 
sequently, we must follow the procedure of Friedrichs (1948) and Keller (1948) 
by evaluating U ,  V ,  P and all their derivatives at  the zero-order elevation given 
by No(X).  Now we will generalize this procedure, so as to directly obtain the 
terms of a higher order than given by Keller (1948), by expressing either U ,  V ,  
or P a t  the surface by means of the Taylor series expansion of each term of 
(2.5). Thus, 

W 

P ( X , N )  = I: a"lP,(X,N) 
n= 0 

m 

Then, upon introducing (2.5) and (2.7) into (2.4), we obtain for the zero-order 

(2.8) 

(2.9) 

1 
terms v,, = 0, v,q, = 0 = v,v,,, 

Kv0, = uop, PO(X,N,) = 0, 

V,(X,  No) = 0, % ( X ,  - H )  = 0; 

which may be solved to yield the following: 

ti, = Uo(X) ,  V,(X,  Y) = 0, Po(X, No) = 0. 
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With these relations kept in mind, the CT terms from (2.4) reduce to 

(2.10) 

Now if we restrict ourselves to the steady-state finite-amplitude waves that 
are defined by Uo = const., we have from (2.9) and (2.10) 

} (2.11) 
Uo = const., V, = 0 = V,, U, =f(X), 

No = const., Po(X, Y )  = No- Y ,  Pl(X,No) = N,(X).  

As shown by Keller (1948) this is the only finite-amplitude solution to the first 
order of approximation. We can duplicate his results by obtaining the uz terms 
of (2.4) as 

(2.12) I UlX + v2, = 0, 
U0UlX+ Plx = 0, Ply = 0, 

%x = Gr, P,(X, No) - N, = 0, 

%(X, No) = UON,,, %(X, -HI = 0, 

which may be integrated to yield 

-P1(X) = U0UlxdX = v, f ( X ) + C  = -N,(X), (2.13) 

(2.14) 
Y 

s 
&(X, Y )  = - UlXdY = - ( Y + H ) f , ,  

s - H  

(2.15) 

Consequently, the identities for Nl in (2.13) and (2.15) show that Uo is restricted 
to the unique constant value given by 

uo = J(No+H), ZL, = J[g(ljlo+h)l- (2.16) 

This proves that the only non-trivial first-order finite-amplitude solution would 
correspond to a hydraulic jump having No, = 0 on both sides of the discontinuity. 

The second-order solution can now be found by evaluatingf(X) in the same 
manner as just used to find U,. That is, we find one expression for N, from the 
free surface boundary condition defined by constant pressure on the surface, 
or P,(X,N) = 0, and another expression for N, from the corresponding free 
surface boundary condition for V,(X, N ) .  Then, by equating these two identities, 
we will find a differential equation to be satisfied byf(X). 

3. The first approximation to the cnoidal and solitary waves 
In  somewhat the same manner as just outlined in $2 ,  Keller (1948) used 

Friedrichs’s (1948) expansion to obtain the first approximation to finite amplitude 
waves similar to the periodic cnoidal waves of Korteweg & de Vries (1895), and 
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uz, + 6, = 0, 

q l  u,, + u, qx + PZ, = 0, 

uoKx+pzp = 0, 

v3x = u3,, 

P3(X, No) - N3 + Nl pz, = 0, 

V3(X, No) = UOK, + UPl, - NlK, = uoN2, - C(Uof+ C)f IX, 
V,(X,  - H )  = 0. a 

1 

Another expression for N, may now be derived by integrating the first equation 
in (3.1) withV3(X,  - H )  = 0 t o  obtain 

(3-1) 

Then, by substituting this into the boundary condition for V3(X, No) in (3. l),  we 
finally obtain, after integration with respect to X ,  

&(x) = [ U , f 2 + C f + ~ ( N ~ + 3 H N ~ - 2 H 3 ) f x x -  ( f l O + H ) R ]  (U,,)-l+const. (3.6) 

We then combine (3.3) and (3.6) to find the ordinary differential equation 
defining f ( X )  : 

(3.7) f x x -  ( & ) f Z -  (g)f +Go = 0, 

after noticing that R(X) is eliminated by introducing (2.16). 
The periodic solution of (3.7) for cnoidal waves is given by the square of the 

Jacobian elliptic function cn, which has the modulus k and the real period defined 
by 4K(k), where K(k)  is the complete elliptic integral of the first kind. This 
solution is f ( X )  = -+Uia%Zcn2(aX, k ) ,  

Co=$U,5a4k2(1-k2)  2 0. 
(3.8) c = +U;a2(2k2- l), 
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The limiting case of k = 1, Co = 0 corresponds to the solitary wave solution of 
Boussinesq (1872) and Rayleigh (1876) since 

cn(aX, 1) = sechaX. (3.9) 

However, i t  is obvious that the other limit of k = 0, namely 

cn(aX, 0 )  = cos a x ,  (3.10) 

cannot provide an explicit solution of (3.7). This is in agreement with the fact 
that the trigonometric functions cannot form an exact, explicit solution for 
finite-amplitude, steady-state waveforms, as first proved by Korteweg & 
de Vries (1895). 

Y = - h  -h 
FIGTJRE 1. The cnoidal wave for 

k2 = 0.9,  a /h  = 0.7129, 2Klh = a/e = 0*771/h, h /h  = 6.68 < 10, 
- 
q/h = 0.260, q/h = 0.7129 cn2(0.771r/h), G/J(gh)  = 1.057. 

The constants C and No can now be evaluated from the boundary conditions 
for the cnoidal wave, as shown in figure 1, by combining (2 .5) ,  (2.15) and (3.8) as 

= %+- a 3  ("U!a2k2 
h e2h 

a 
h 

= - c n 2 ( a X , k ) + 0  

where 
e 

d G  ?O - = 1+%,  
h 

since 

2kz-1 a 2k2-1 d3 
3 h = F, = (T) ,,(+Uta2k2). 

(3.11) 

(3.12) 

(3.13) 

28-2 
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The complete solution of the first approximation to cnoidal waves may therefore 
be obtained as 

(3.14) 

This first approximation to the cnoidal wave (or the solitary wave for k = 1) is 
identical to the solutions originally given by Korteweg & de Vries (1895) if one 
correctly eliminates their higher-order terms which will be shown to be incorrect. 
It is interesting to note that the pressure is still hydrostatic but the vertical 
velocity cannot be neglected, as commonly assumed. Although the vertical 
velocity magnitude is of a slightly higher order of approximation, it is not a 
negligible quantity of order (a/h)2. We were able to evaluate the vertical velocity 
variation, which is seen to be a linear function of the water depth, since V, does 
not depend upon the unknown function R ( X )  which we must now evaluate in 
order to determine the next approximation to the cnoidal wave. 

4. The second approximation to the cnoidal and solitary waves 
In  order to obtain the next, or second approximation we now need the (r4 

terms of (2.4), which may be obtained by the same procedure as used in $3.  Thus, 

u3, + K, = 0, 

uO'3x + u1 uZx+ uZ 9, + p3x +q &, = O ,  

v3, + u1 + p3, + % %, = 

P3(X, Y )  = -UoU3-UlUz-~V~+const., (4.2) 

so that the fifth equation in (3.1) may then be written as 

N3(x)  = p 3 ( x ,  N O )  + N l p Z r  

= ( - UoS(X) - 2 (N;  + 4HN; - 8H3No)fxxxx + 2 ( N i  + 2H&) R,, 
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after noting that U3 may be obtained from (3.1) and (3.5) as 

U J X ,  Y )  = V,$Y s 
= {&( Y4+ 4HY3-  8H3Y)  fxxxx - +( Y2+ 2H Y )  Rxx +S(X)} .  (4.4) 

Another expression for iV3 is developed from the first and last two equations in 
(4.1) by writing 

Y 

={-&(YS+5HY4-20H3Y2+ 16H6) fXXXXX 

+ &( Y3+ 3H Y 2 -  2H3) Rxxx- ( Y + H ) X x } ,  (4.5) 

& ( X )  = 

1 
= -__ (Ni  + 5HNi  - ZOH3Ni + 16HS) f x x x x  ( 120u0 

1 1 + - (N,3 + 3HNt  - 2H3) R,, - UoS(X) - - N2 f 
6UO u, 

I 1 + ( Uo f+ C )  [ - +( N,2 + BHNo)fx, + R] - + const. . (4.6) u, 
Then, by taking N2 from (3.3), we may equate (4.3) and (4.6) to obtain the fol- 
lowing ordinary differential equation to be satisfied by R ( X ) :  

u5 R,, - (g  + 3 f )  R = $ (U,4 - 5H2) fxxxx  - *( U t  - 3H2) f f x x  

C u," 2 I f 3  
2UO 2 2u0 

+ __ (U$ + H 2 )  f x x  + - fz + - - + const. (4.7) 

The solution of (4.7) that corresponds to (3.8) is given by 
R ( X )  = ~ ( ( ~ ) 2 ( l - F G ) ~ n 4 ( a X , k )  9 H 2  

U i  2k2-1 

+ (m) ( 2 u:) 10 (2k2- 2 27: 
3 k2(1 - k2)  

( 5 H 2 )  i] 3 H 2  
1+-- Cn'(aX,k)--- I - - -  -- > (4.8) 

k2 

so (3.3), or (3.6), becomes 

5 k2 12 - 57k2 + 57k4 
-- 2 (-) 2 P - 1  cn2(ax7 k ,  + x ( s k v ]  9 (4.9) 

which we now may add to (3.11) to give the second approximation as 

d5 (e".) h h e2h e h 
= h + - - N l + T N 2 + o  a 3  - 

70 Tl k2 " [-" (L) 2 cn4(aX,k)  
cn2(aX,k)  +------ = _- -  

( h  h [l-(-) ] h(To+h) 4 2k2-1 

5 k2 

Cd3 2 2 

-2 (m) cn2(aX9 

where rl = __ = (%) 9(2k2- 1)  ( d U 3 3  = (%) 9(2k2- 1)  (~, ,+h)~. (4.11) e2 
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The periodic boundary conditions shown in figure 1 now yield the relations 

k2 - 1 7; 12 - 7k2 - 28k4]) 
7 ( 0 ) = a =  ( 7 0 - 7 1 ( m ) + F h [  20(2k2-1)2 ' (4.12) 

(4.13) 

which may be solved for the second approximation as 

38-  128k2+ 113h4) + o -  (33 , 
(4.14) 

h - k2 20k4 

2 k 2 - l a  a 85k2-50 
B -  h - -- k2 h[ '+%( 2 0 P  )]+O($y' (4.15) 

e) = Ecn2(aX,k) - - (  3 a 2  ) cn2(aX,k)[1-cn2(aX,k)]+0 
h h  4 %  

ax=- -- 
h ( 4 k z h  .)a (I +;)-$ [ 1  +; ( 85;;,,0)] 

(4.17) 

= 1+ 1-- -- (21k4-6k2-9)  

( ( 1 ) a  2k2 h 40k4 

-$ [ 1 -h a ( T )  71c2-2 -; f ( 2  - h) (2h+ha)] Y Y2 cn2(aX, k )  

+!(j$2(&1) 4 ( 2 h + h a ) + ~ ( $ ) 3 ) ,  Y Y2 

- (">" h [-"+! 4 4  ( 2 y + 9 ) ]  h h 2  cn4(aX, k )  

+ (%)'& (y3  + 3hy2 - 2h3)fxxx]  -!..- J W )  

= -([: ( $ ) 3 ~ ( l + b ) c n ( a X , k ) s n ( a X , k ) d n ( a X , k )  

x 1-- a ___ 5k2+2 - _  Y Y2 [ h (  8k2 ) i(1-&)(2%+@) 
- A ?  ( 1  - 6 9 -  3 9 )  cn2(aX, k ) ]  + 

2 h  h h2 

(4.18) 

(4.19) 
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x [1-ka+2(2k2- l)cn2(aX, k)-3k2cn4(aX, k)]+O - . (4.20) 

These second approximations to the cnoidal wave show that the (a/h)2 terms 
of Korteweg & de Vries (1895) are not all correct, although their expressions 
predict nearly the same behaviour as do (4.16) to (4.20). Their results are most 
nearly correct for the limiting case of the solitary wave (k = 1). As a matter of 
fact, their expressions for the solitary wave profile and its propagation velocity 
may be written as 

(Y 

* = sech2aX(l-sech2aX)+O 

(4.21) 

h h  

ax = x - (--) 3 a  4 (I-;;) +o($ 
h 4 h  

and these results are seen to be in exact agreement with the values given by 
(4.16), (4.17) and (4.18) for this limiting case of k = 1. 

The solitary wave propagation velocity given by (4.21) is also in exact agree- 
ment with the one obtained by Weinstein (1926), after his numerical error is 
corrected as was done by Long (1956), and also by Hunt (1955) who derived 

(4.22) 

Since Weinstein used an entirely different expansion method for his successive 
approximations to the solitary wave, and his corrected results as given in (4.22) 
are in agreement with the preceding results derived by Friedrichs’s expansion 
method, therefore we are led to believe that the power series in terms of cr does 
converge as long as (a/h) < 1 and k is sufficiently near unity. Littman (1957) 
gave an existence proof for cnoidal waves, using a method resembling the one 
used by Friedrichs & Hyers (1954) to  prove the existence of solitary waves, which 
demonstrated that at  least for cnoidal waves Friedrichs’s expansion method may 
only give an asymptotic description. 

It is interesting to note that values of k near unity correspond to supercritical 
flow, or u. > ,/(gh). For example, (4.21) in itself shows that the solitary wave 
(k = 1) can only occur in supercritical flow. However, as first proved by Littman 
(1957), the cnoidal wave can exist in either subcritical or supercritical flow, but 
it must be noted that Littman’s existence proof is valid only near critical flow, 
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so cnoidal waves may be restricted to near critical flow. The conditions necessary 
for subcritical flow are best determined from considerations of the average pro- 
pagation velocity. Following Korteweg & de Vries (1895), we define the average 
velocity of propagation C, as the constant horizontal velocity which would 
reduce the resultant horizontal momentum to zero. Therefore, from (3.15), 

A h+q 1 1 UdYdX c = -0 -0 loa dy dx 

hh+ q(x)dz Jd' 
= J ( g h ) [ l + ( ~ ) z + o ( ; ) ~ ]  2k2-1 a [1+ilOATdx]-'7 (4.23) 

while from (3.11) and (3.12) we obtain 

because (3.12) and figure 1 shows that the wavelength h is given by 

Then, if we substitute (4.24) into (4.23) and retain only the &st-order terms, 
we obtain 

(4.26) 

which is identical to the expression first given by Korteweg & de Vries (1895). 
It is important to note that the average propagation velocity defined by (4.26) 
satisfies both definitions proposed by Stokes (1880, p. 203) in this first (or 
linearized) approximation, as may be seen after integrating (3.15) by noting (4.24) 

However, this is only true for the first approximation since the second approxi- 
mation (4.18) shows that the local velocity now depends upon y also. 
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The direct effect of the second approximation on the wavelength is shown by 
solving (4.17) to obtain 

7k2-2 a z=(3a/h)t 4kK(k) [ + (-) + o ( ; ) ~ ] ,  (4.27) 

which conclusively proves that Korteweg & de Vries (1895) were correct in 
eliminating the higher-order terms from (4.25) and (4.26). A comparison of (4.25) 
and (4.27) indicates how the second approximation directly alters the coefficients 
of the terms that must be neglected. 

Equation (4.26) shows that the critical velocity (C = d(gh))  is attained when 

E(k)  - K ( k )  = 2.321, k2 = 0.8261, = 4.87 [ 1 + 0@]. (4.28) 
K ( k )  2’ h (a/h)& 

Consequently, subcritical flow can only occur if k < 0.9 and (h/h) < 4~87/ , / (a/h) .  
Since the generally accepted, experimentally verified, restriction on shallow- 
water theory is that h > 10h, therefore finite amplitude cnoidal waves must 
have k near unity, and have their average propagation velocities near critical. 
For example, if k = 0.7, then a/h < 0.09 in order to keep h > 10h, and this 
amplitude of wave height is such that it may be better described by the higher- 
order terms of the small amplitude surface-wave theory of Stokes (1880, pp. 197 
and 314). As previously pointed out, the limiting value of k = 0 is not a solution 
of (3.7), and as shown by (3.15) and (4.26) small values of k can make all the 
velocities negative, so they are physically impossible unless the wave amplitude 
approaches zero as a limiting value. 

5. The limiting height and maximum velocity of cnoidal and solitary 
waves 

A comparison of (3.14) and (4.20) proves that the hydrostatic pressure assump- 
tion for finite amplitude shallow-water waves is valid only to the first order of 
(a/h). Even more important, however, is the fact that (4.19) shows that the 
vertical velocity variation is no longer monotonic if a/h is sufficiently large. For 
example, (3.16) gave a linear variation in vertical velocity, whereas (4.19) 
proves that the increase of v with a/h can be completely reversed for all y near 
the surface of a wave crest whenever 

a 8k2 < -, 8 h > a 2 lyl, cn2(aX,k)  i [l--&$)2+O(;)l, (5.1) 
z=9k2+2 11 

since all y i a must be neglected in (4.19) because they form terms of O ( U / ~ ) ~ .  
This reversal in the variation of the vertical velocity may be considered as 
defining the limiting height of cnoidal waves, the maximum value occurring 
for the solitary wave when k = 1, so (4.21) and (5.1) yield 

That is, we have defined the limiting height as the smallest height at which the 
vertical velocity ceases to be a monotonic function of y. It can now be shown 
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that this provides a rational limiting height and velocity for the solitary wave by 
noting that for the special case of k = 1 we may write (4.13) as 

3 
b --T#?:-T#?1+u = 0, 

a+h 

which has a real solution only if 

(5.3) 

These limiting values are not only in close numerical agreement but are also 
consistent with the order of approximation involved since $ = 0.7143 is based 
on the equation for 11 which is of the order (u/h)2, whereas = 0.7273 is based 
on the equation for v which is of the order (a,%)&. These values are in excellent 
agreement with recent experimental investigations by Daily & Stephan (1952), 
and Ippen & Kulin (1955), who have shown that all steady-state solitary waves 
have (u/h) < 0.72 rather than the limiting value of 0-782 as originally evaluated 
by McCowan (1894), or the value of 0.827 as recently obtained by Yamada (1957). 

It must be noted that (5.2) is the first theoretical evaluation of the limiting 
height of solitary waves that is based upon the vertical velocity variation. The 
previous limiting heights have been primarily based upon approximate numerical 
calculations of a profile having a sharp peak with an enclosed angle of 120", in 
accordance with Stokes's (1880, p. 227) conjecture that this would define the 
limiting height since it would correspond to a relative local velocity of zero at  the 
crest. However, Korteweg & de Vries (1895) have proved that any finite ampli- 
tude, shallow-water profile that did not correspond to (4.21) would not be steady 
with respect to time; consequently, the sharp peak 120" wave crest should always 
be higher than the limiting value of $'i since i t  corresponds to an unstable wave 
that has exceeded the breaking height. Experimental observations by the author 
have shown that when the limiting height of is approached, the wave crest 
breaks unsymmetrically with a round crest instead of a sharp peak. 

For cnoidal waves, (5.1) would define the limiting height for the vertical velo- 
city reversal, and (4.18) would give the corresponding horizontal velocity com- 
ponent. However, for a cnoidal wave it is generally more desirable to refer the 
wave profile to the average depth (h+v)  (see figure 1) rather than the depth h 
that occurs beneath the wave tough. Only in the limiting case of k = 1 does 
h represent the still-water depth at an infinite distance from the solitary wave. 
For values of k < 1 the average depth (h  + 7)  would correspond to the still-water 
depth since it represents the height of the water surface if the cnoidal waves were 
flattened. The first approximation for 7 is given by (4.24), and as would be 
expected, 7 = 0 for the solitary wave (k = 1, h N K --f 00). It is interesting to 
note from (3.15) and (4.26) that (u-C), the relative velocity of the water par- 
ticles, is given by 
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Consequently, the relative velocity of the water particles is zero at  the average 
depth (h + r),  and is in the direction of the wave propagation only when 7 < 7. 

The above results are for the first approximation to  cnoidal waves, and now 
may be carried out to the second approximation by introducing (4.16) into 
(4 .24 )  to  obtain 

(5.6) 

As before, 5 = 0 for the limiting case of the solitary wave ( k  = 1, h N K +. 00). 

In  addition, through a rather fortunate circumstance, the second approximation 
for ?j gives approximately the same value as does the first approximation (4.24) 
because a numerical comparison shows that 

E(k)  . ( 1 - k 2 ) ( 8 - 3 k 2 )  = 1 - + k 2 - ~ 4 - & ~ + . . . .  16 
-- 
K ( k )  ( 8  - 7 k 2 )  (5 .7 )  

This numerical approximation seems to be remarkably accurate for small values 
of k .  Of course, as previously pointed out, the finite-amplitude cnoidal wave 
theory is only valid for k approaching unity, so (5 .2 )  may be considered as defining 
the limiting values of the heights and propagation velocities of cnoidal waves, 
with ?j closely approximated by (4 .24) .  
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